

EU Declaration of Conformity

for

Electromagnetic Compatibility according to the Directive 2014/30/EU

The company Eletta Flow AB, Sweden, hereby declares that the Flow Monitors denominated <u>Eletta D-series and M-series</u>, manufactured by Eletta Flow AB, intended for metering, monitoring and controlling of liquid or gas flow in piping systems, are in accordance with:

- a) The COUNCIL DIRECTIVE of 26th February 2014 on the approximation of the laws of the Member States concerning electromagnetic compatibility.
- b) In compliance with the specifications:

EN IEC 61000-6-2:2019 EN IEC 61000-6-3:2021 EN/(IEC) 61000-6-3:2007+A1

according to reports no. 622-20134-10-RO and 621-20045-10-RO.

Kungens Kurva, 29 September 2022

Eletta Flow AB

Niclas Johansson

CEO

DELTA Test ReportTEST REPORT issued by an Accredited Testing Laboratory

EMC test of M3 Display

Performed for Eletta Flow AB

621-20045-10-R0 Page 1 of 34

02 July 2021

DELTA Development Technology AB

Finnslätten Elektronikgatan 47 721 36 Västerås Sweden

Tel. 021-31 44 80 infose@delta.dk www: se.madebydelta.com

Bankgiro 5534-7728 VAT SE 556556207001

DELTA Development
Technology AB
is a subsidiary company of
FORCE Technology

Title

EMC test of M3 Display

Test object

M3 Display

Report no.

621-20045-10-R0

Test period

15 February 2021 to 28 May 2021

Client

Eletta Flow AB Mälarvägen 3

141 71 Segeltorp

Sweden

Contact person

Ahmad Jasim

E-mail: ahmad.jasim@eletta.com

Manufacturer

Eletta Flow AB

Specifications

EN IEC 61000-6-2:2019, EN/(IEC) 61000-6-3:2007+A1

Results

The test object was found to be in compliance with the

specifications, as listed in Section 1

Test personnel

Jan Högkvist, Lars Johnsson

Date

02 July 2021

Project Manager

Jan Högk vist Specialist

DELTA

Responsible

Lars Johnsson. Head of quality

DELTA

	Table of contents	Page
1.	Summary of tests	4
2.	Test object and auxiliary equipment	5
2.1	Test object	5
2.2	Auxiliary equipment	6
3.	General test conditions	8
3.1	Test setup during test	8
3.1.1	Cables	8
3.1.2	Description and intended use of test object	8
3.1.3	Test modes and supervision during immunity tests	8
3.1.4	Test modes during emission tests	8
3.1.5	Nominal power consumption	8
3.2	Criteria for compliance during immunity test	9
3.3	Modifications of the test object	10
3.4	Test sequence	10
4.	Test results	11
4.1	Immunity to electrostatic discharges	11
4.2	Immunity to radio frequency electromagnetic field	16
4.3	Immunity to fast transients	20
4.4	Immunity to surge transients	22
4.5	Immunity to conducted radio frequency disturbances	25
4.6	Measurement of radio frequency electromagnetic field	28
5.	National registrations and accreditations	32
5.1	SWEDAC Accreditation	32
5.2	FCC Registrations	32
5.3	ISED Registrations	32
6.	List of instruments	33

1. Summary of tests

Tests	Test methods	Results
Immunity to electrostatic discharges	EN/(IEC) 61000-4-2:2009	Passed
Immunity to radio frequency electromagnetic fields	EN/(IEC) 61000-4-3:2020	Passed
Immunity to fast transients	EN/(IEC) 61000-4-4:2012	Passed
Immunity to surge transients	EN/(IEC) 61000-4-5:2014+A1	Passed
Immunity to conducted radio frequency disturbances	EN/(IEC) 61000-4-6:2014	Passed
Immunity to power frequency magnetic field	EN/(IEC) 61000-4-8:2010	Not performed Note 1
Measurement of radio frequency electromagnetic field	CISPR 16-2-3:2016	Passed

Note 1: The test object contains no magnetically sensitive devices.

The edition of the basic standards above is equal or newer than those referenced in the standard below.

Conclusion

The test object mentioned in this report meets relevant requirements of the standards stated below, with respect to the test listed above.

- EN IEC 61000-6-2:2019 "Electromagnetic compatibility (EMC) Part 6-2: Generic standards Immunity for industrial environments"
- EN/(IEC) 61000-6-3:2007+A1 "Electromagnetic compatibility (EMC) Part 6-3: Generic standards Emission standard for residential, commercial and light-industrial environments"

The test results relate only to the object tested.

2. Test object and auxiliary equipment

2.1 Test object

Photo 2.1.1 M3 Display with air pump

Test object 2.1.1

Name of test object M3 Display Model / type M3 Display

Part no. Serial no. 000
FCC ID -

Manufacturer Eletta Flow AB

Supply voltage 18 - 28 Vdc (24Vdc nominal)

Software version v1.1
Hardware version V1.2
Cycle time -

Highest frequency generated or

used

Comment

Received Date: 15 Feb. 2021 Status: Prototype

8 MHz

2.2 Auxiliary equipment

Photo 2.2.1 Auxiliary equipment.

Auxiliary equipment 2.2.1

Name of auxiliary equipment Sphygmomanometer with air pump

Model / type

Part no.

Manufacturer

Comment Auxiliary equipment supplied by the client, who also has

the responsibility for its correct function and set up.

Used for simulating pressure to the test object

Auxiliary equipment 2.2.2

Name of auxiliary equipment Digital multimeter

Model / type 87

DELTA ident no. IE-B353

Manufacturer Fluke

Comment Auxiliary equipment supplied by DELTA, who also has

the responsibility for its correct function and set up.

Used to measure the input current to the test object

Auxiliary equipment 2.2.3

Name of auxiliary equipment Digital multimeter

Model / type MetraHit Ultra BT

DELTA ident no. 36110

Manufacturer MetraWatt

Comment Auxiliary equipment supplied by DELTA, who also has

the responsibility for its correct function and set up.

Used to measure the input current to the test object

Auxiliary equipment 2.2.4

Name of auxiliary equipment Power supply

Model / type 3000

DELTA ident no. IE-A190

Manufacturer Powerbox

Supply voltage Output set to 24 VDC

Comment Auxiliary equipment supplied by DELTA, who also has

the responsibility for its correct function and set up.

Used for power to the test object

3. General test conditions

3.1 Test setup during test

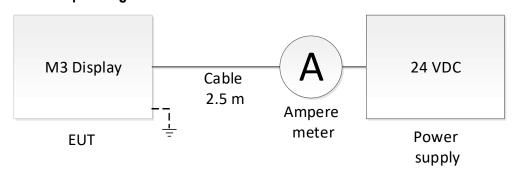


Figure 3.1.1 Block diagram of test object with cables and auxiliary equipment.

3.1.1 Cables

The following cables were used during test.

Port name	Port type	Shielded/ unshielded	Length during test [m]	Maximum length [m]	Remarks
DC power + signal	DC power + signal	Unshielded	0.3 - 2.5	> 30	Cable with ferrite, M12-8

3.1.2 Description and intended use of test object

The object is used for measuring the flow of liquid and gas and utilizes differential pressure to calculate the flow of the medium.

3.1.3 Test modes and supervision during immunity tests

The object connected to manual air pump to simulate a differential pressure inside the object. The test was monitored by measuring the output current and visually observing the display.

3.1.4 Test modes during emission tests

The object connected to manual air pump to simulate a differential pressure inside the object.

3.1.5 Nominal power consumption

Power supply of 18VDC and 4mA output signal = 75mW Power supply of 28VDC and 20mA output signal = 560mW

3.2 Criteria for compliance during immunity test

Performance criteria according to corresponding standard were applied during immunity tests as follows:

General

The test object shall not become dangerous or unsafe as a result of the application of the tests.

Performance criterion A

The test object shall continue to operate as intended during the test.

Influence on the analog mA output signal shall be < +/-1%.

Influence on the display indicator shall be < 5%

No error or warning signals are allowed.

The test object is not allowed to change operating mode.

Performance criterion B

The test object shall continue to operate as intended after the test.

No change of operating state or stored data are allowed.

Performance criterion C

The test object is allowed to have temporary degradation or loss of function or performance which requires operator intervention or systems reset.

3.3 Modifications of the test object

The following modification was implemented to the test object.

• 1. In order to improve the result of surge transient immunity test the following modification was implemented:

Bulk capacitor close to the processor.

The bulk capacitor with a value of $10\mu F$ was added close to the processor to stabilize the power-supply.

Enough energy was stored to compensate short disturbances in the supplied power and created a smooth decrease in power if the supplied power was cut off.

This did not completely solve the issue since the processor could still reach an undefined state if the power would stabilize between 1.0V and 1.8V. This issue was solved by the brown out detection.

Brown out detection.

This was a software solution that solved the issue with an undefined state in the processor. The processor would completely restart if a significant disturbance in the power supply was detected. The significant disturbance is a sustained power-supply voltage of less than 1.8V.

TVS diode between the VCC (3V3) and protective earth.

This was added to prevent any overvoltage spikes on the 3V3 power plane. Abruptly changing the supplied power on and off could cause voltage spikes on the power-plane and potentially damage the processor.

Reinforced ground connection

The grounding connection between the PCB and protective earth was reinforced with a woven copper strip. This helped divert any unwanted transients from the input and power-plane.

3.4 Test sequence

The tests described in this test report were performed in the following sequence:

- 1. Immunity to radio frequency electromagnetic fields
- 2. Immunity to electrostatic discharges
- 3. Immunity to fast transients
- 4. Immunity to surge transients. Failed with grounded EUT.
- 5. Immunity to fast transients with grounded EUT.
- 6. Modification 1 implemented. See section 3.3 for details.
- 7. Immunity to surge transients. Retest. Passed.
- 8. Immunity to conducted radio frequency disturbances
- 9. Measurement of radio frequency electromagnetic field

4. Test results

4.1 Immunity to electrostatic discharges

Test object	M3 Display	Project no.	621-20045
Туре	M3 Display	Date	15 Feb. 2021
Serial no.	000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	В

`	C) 61000-4-2:2009 irge network: 150 pF, 330 Ω		Temperate Humidity	ure 20 °C 36 % RH		
Test equipm. EMC Transient lab Västerås Setup VIC2				Uncertain	ty 1.1 dB	
Surface under test	Test standard's name of surface	Coupling of discharges	No of disch. each combin.	Amplitude [kV]	Passed	Remarks
Enclosure Indirect discharge	Enclosure	HCP contact	10	+/- 4	Yes	See Photo 4.1.2
Enclosure Indirect discharge	Enclosure	VCP contact	10	+/- 4	Yes	See Photo 4.1.3 and 4.1.4
Metallic connector housing and case	Metallic	Direct contact	10	+/- 4	Yes	See Photo 4.1.5 and 4.1.6
Plastic enclosure, display and connector housing	Insulated	Direct air	10	+/- 2, 4 and 8	Yes	See Photo 4.1.7

Criteria for compliance See Section 3.2

Test result The discharges caused no malfunctions

Compliant Yes

Comments During the test the EUT case was not separately grounded.

Photo 4.1.1 Test setup regarding immunity to electrostatic discharges.

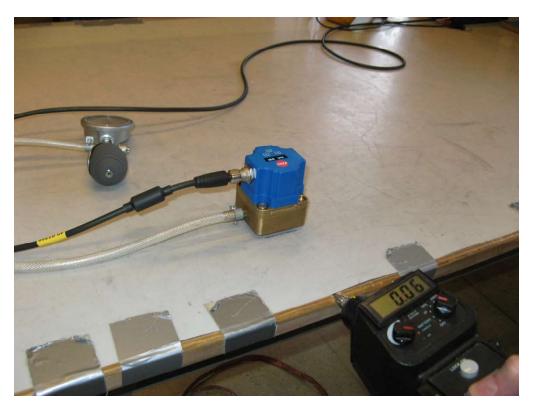


Photo 4.1.2 Test setup regarding immunity to electrostatic discharges. Discharges via HCP indirect coupling in four directions.

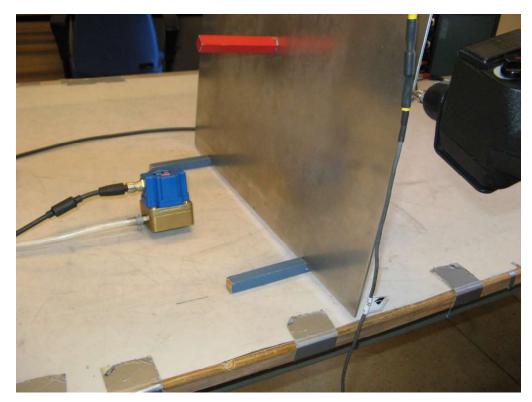


Photo 4.1.3 Test setup regarding immunity to electrostatic discharges.

Discharges via VCP indirect coupling in five directions.

Photo 4.1.4 Test setup regarding immunity to electrostatic discharges. Discharges via VCP indirect coupling.

Photo 4.1.5 Test setup regarding immunity to direct contact electrostatic discharges.

Photo 4.1.6 Test setup regarding immunity to electrostatic discharges. Sample of test points for direct contact discharges.

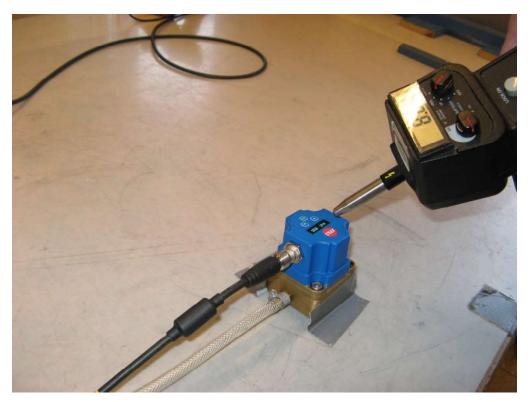


Photo 4.1.7 Test setup regarding immunity to direct air electrostatic discharges.

4.2 Immunity to radio frequency electromagnetic field

Test object	M3 Display	Project no.	621-20XXX
Туре	M3 Display	Date	15 Feb. 2021
Serial no.	000	Initials	JANH
Specification	EN/(IEC) 61000-6-2:2005, EN IEC 61000-6-2:2019	Required Perf. criter.	А

Test method Characteristics	•	C) 61000-4-3:2020			Temperature Humidity	23 °C 19 % RH
Test equipm. 0.08 - 1 GHz: EMC Hall B Västerås Setup VIE4 1 - 6 GHz: EMC Hall B Västerås Setup VIE3			Uncertainty	1.9 dB		
Frequency ra	ange	Modulation	Field direction	Amplitude [V/m]	Passed	Remarks
		Front	side exposed to the f	ield		
80-1000 M	lHz	80 % AM 1 kHz	Horizontal	10	Yes	Note 1
80-1000 M	lHz	80 % AM 1 kHz	Vertical	10	Yes	
1.4-6 GH	z	80 % AM 1 kHz	Horizontal	3	Yes	
1.4-6 GHz		80 % AM 1 kHz	Vertical	'ertical 3		
		Botton	n side exposed to the	field		
80-1000 M	lHz	80 % AM 1 kHz	Horizontal	10	Yes	Note 1
80-1000 M	lHz	80 % AM 1 kHz	Vertical	10	Yes	
1.4-6 GH	z	80 % AM 1 kHz	Horizontal	3	Yes	
1.4-6 GH	z	80 % AM 1 kHz	Vertical	3	Yes	
		Left side (with	h cable inlet) exposed	to the field		
80-1000 M	lHz	80 % AM 1 kHz	Horizontal	10	Yes	Note 1
80-1000 M	lHz	80 % AM 1 kHz	Vertical	10	Yes	
1.4-6 GH	z	80 % AM 1 kHz	Horizontal	3	Yes	
1.4-6 GH	z	80 % AM 1 kHz	Vertical	3	Yes	

Note 1: The display reading was influenced between \sim 128 - 162 MHz. The deviation of the reading was \leq 4.5 % but the measured current was not affected. Criteria A was fulfilled.

Criteria for compliance See Section 3.2

Test result The radio frequency electromagnetic field caused no

malfunctions

Compliant Yes

Setup comments Frequency step: 1 %, dwell time: 1 second

Comments The test shall normally be performed with the field

generating antenna facing each side of the test object. When technically justified the test object can be tested by

exposing fewer faces to the generating antenna.

In agreement with the client, the sides assumed to be most

susceptive were tested here.

During the test the EUT case was not separately grounded.

Photo 4.2.1 Test setup regarding immunity to radio frequency electromagnetic field for test between 80-1000 MHz.

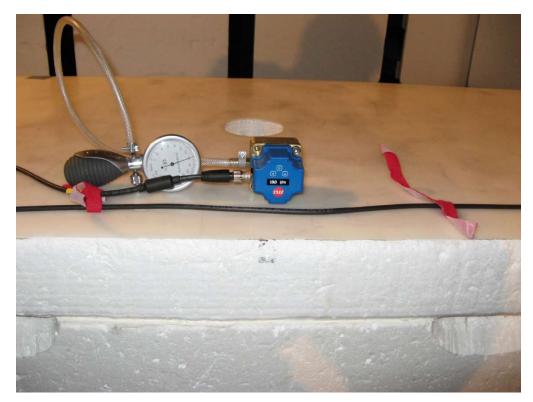


Photo 4.2.2 Test setup regarding immunity to radio frequency electromagnetic field. Front side exposed to the field.

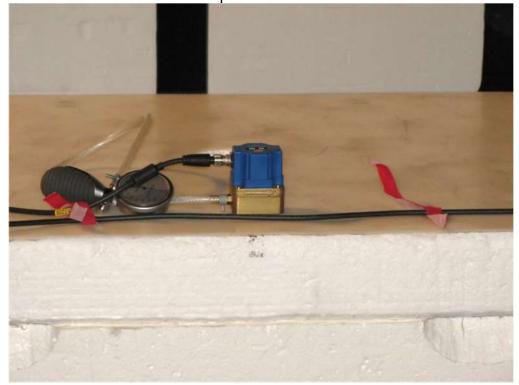


Photo 4.2.3 Test setup regarding immunity to radio frequency electromagnetic field. Bottom side exposed to the field.

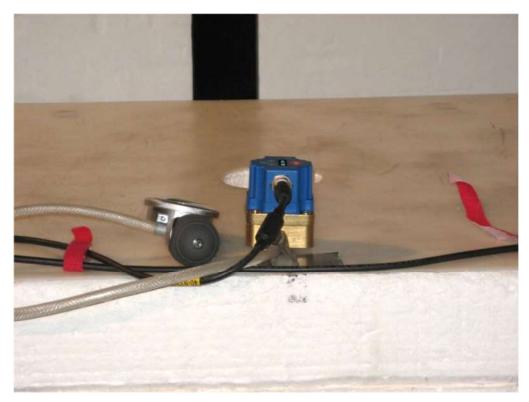


Photo 4.2.4 Test setup regarding immunity to radio frequency electromagnetic field. Left side (with cable inlet) exposed to the field.

Photo 4.2.5 Test setup regarding immunity to radio frequency electromagnetic field for test above 1 GHz.

4.3 Immunity to fast transients

Test object	M3 Display	Project no.	621-20045
Туре	M3 Display	Date	15 Feb. 18 Mar. 2021
Serial no.	000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	В

Test method Characteristics	` '	•	61000-4-4:2012 sts of 15/300 ms and 100 kHz bursts of 0.75/300 ms				e 23 °C 31 % RH
Test equipm. EMC Transient lab Västerås Setup VIB1					Uncertainty	1.1 dB	
Manufactu name of p		Test standard's name of port	Coupling	Burst frequency [kHz]	Amplitude [kV]	Passed	Remarks
DC power +	signal	Cable	Cap.clamp-GP	5	+/- 1	Yes	Note 1
DC power +	signal	Cable	Cap.clamp-GP	100	+/- 1	Yes	Note 1
DC power +	signal	Cable	Cap.clamp-GP	5	+/- 1	Yes	Note 2
DC power +	signal	Cable	Cap.clamp-GP	100	+/- 1	Yes	Note 2

GP= Ground reference Plane Note 1: Test object grounded.

Note 2: Test object not grounded.

Criteria for compliance See Section 3.2

Test result The fast transients caused no malfunctions

Compliant Yes

Test time 1 min/polarity

Comments The EUT was tested with the case both grounded and not

grounded

Photo 4.3.1 Test setup regarding immunity to fast transients on power + signal port. Test object grounded.

Photo 4.3.2 Test setup regarding immunity to fast transients on power + signal port. Test object not grounded.

4.4 Immunity to surge transients

Test object	M3 Display	Project no.	621-20045
Туре	M3 Display	Date	15 Feb. 25 May 2021
Serial no.	000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	В

					Temperature Humidity		23 °C 36 % RH
Test equipm. EMC Transient lab Västerås Setup VID1							1.1 dB
Manufacturer's name of port	Test standard's name of port	Coupling and generator impedance	No of surges each combin.	Amplitude F		Passed	Remarks
DC power + signal	Unshield.lines	+VDC-PE 42 Ω, 0.5 μF	5	+/- ().5, 1	Yes	Note 1
DC power + signal	Unshield.lines	0V-PE 42 Ω, 0.5 μF	5	+/- ().5, 1	Yes	Note 1
DC power + signal	Unshield.lines	+VDC-PE 42 Ω, 0.5 μF	5	+/- ().5, 1	Yes	Note 2
DC power + signal	Unshield.lines	0V-PE 42 Ω, 0.5 μF	5	+/- ().5, 1	Yes	Note 2
l							

Note 1: Test object grounded. Note 2: Test object not grounded.

Time between tests 10 s

Criteria for compliance See section 3.2

Test result With grounded case, the test object restarts for each pulse

at 1 kV test level. However, it returns directly to the same condition as before, which means that criterion B is met.

Modification 1 was implemented.

Compliant Yes

Comments The EUT was tested with the case both grounded and not

grounded

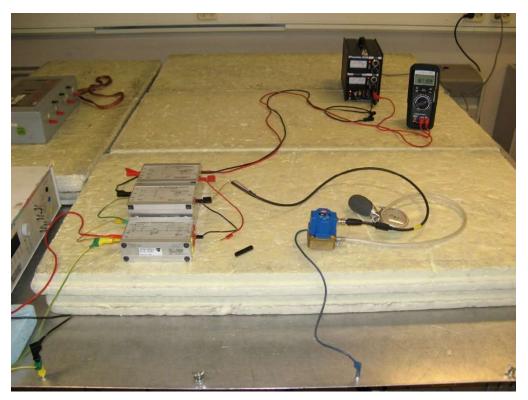


Photo 4.4.1 Test setup regarding immunity to surge transients.

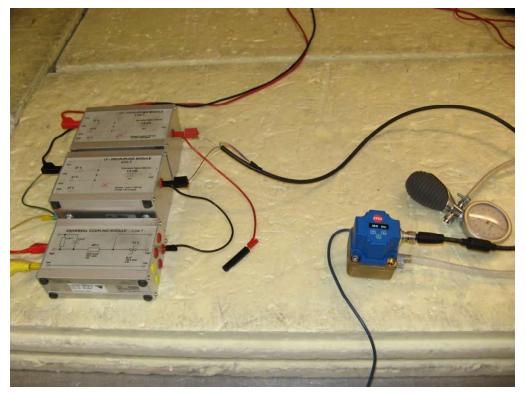


Photo 4.4.2 Test setup regarding immunity to surge transients on power + signal port. Test object grounded.

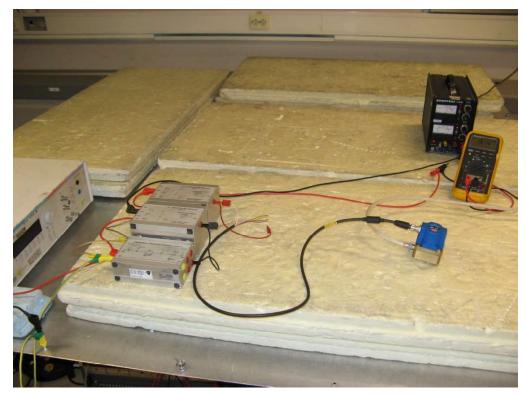


Photo 4.4.3 Test setup regarding immunity to surge transients on power + signal port. Test object not grounded.

4.5 Immunity to conducted radio frequency disturbances

Test object	M3 Display	Project no.	621-20045
Туре	M3 Display	Date	25 May. 2021
Serial no.	000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	A

Test method EN/(IEC) 61000-4-6:2014 Characteristics Frequency range: 0.15-80 MHz, modulation: 80 % AM 1 kHz					Temperature Humidity	23 °C 36 % RH
Test equipm.	EMC Tr	Uncertainty	1.4 dB			
	Manufacturer's name of port		Coupling Network	Amplitude [V]	Passed	Remarks
DC power + s	signal	Unshielded lines	CDN M2, TE-A544	10	Yes	Note 1
DC power + signal		Unshielded lines	CDN M2, TE-A544	10	Yes	Note 2
						Note 3

Note 1: Test object grounded.

Note 2: Test object not grounded.

Note 3: The display reading was influenced between \sim 55 – 70 MHz. The deviation of the reading was \leq 1.6 % but the measured current was not affected. Criteria A was fulfilled.

Criteria for compliance See Section 3.2

Test result The disturbances caused no malfunctions

Compliant Yes

Setup comments Frequency step: 1 %, dwell time: 1 second

Comments The EUT was tested with the case both grounded and not

grounded

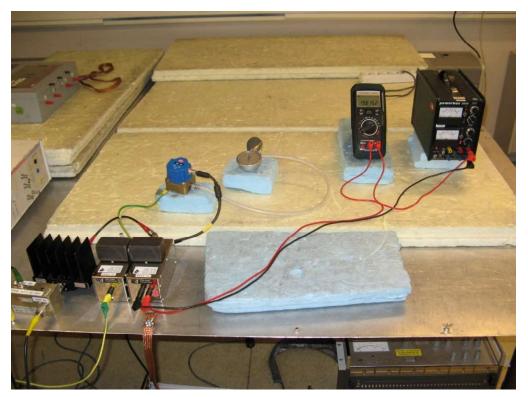


Photo 4.5.1 Test setup regarding immunity to conducted radio frequency disturbances.

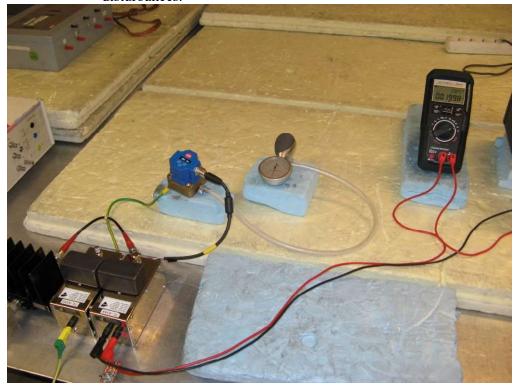


Photo 4.5.2 Test setup regarding immunity to conducted radio frequency disturbances on power + signal port. Test object grounded.

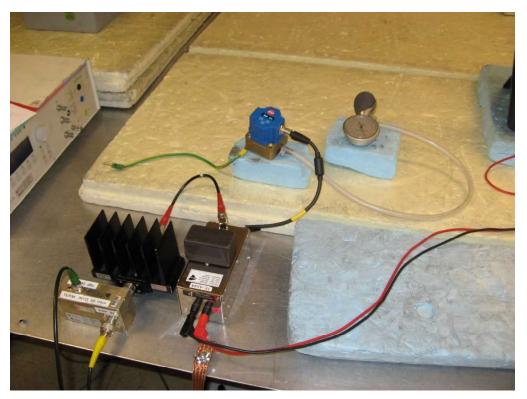


Photo 4.5.3 Test setup regarding immunity to conducted radio frequency disturbances on power + signal port. Test object not grounded.

4.6 Measurement of radio frequency electromagnetic field

Test object	M3 Display	Project no.	621-20045
Туре	M3 Display	Date	28 May. 2021
Serial no.	000	Initials	LAJ
Specification	EN/(IEC) 61000-6-3:2007+A1	Frequency	30-1000 MHz

Test method Characteristics	CISPR 16-2-3:2016 Complete search, antenna distance 10 m	Temperature Humidity	22 °C 41 % RH
Detector	Peak and quasi peak	Bandwidth	120 kHz
Test equipm.	EMC Hall A Västerås Setup VEC1	Uncertainty	5.0 dB

Test result The measured field strengths were below the limit

Compliant Yes

Comments Final maximal measurements by variation of turntable

azimuth, antenna height, and antenna polarisation.

CMAD absorption clamp was used on power supply cable.

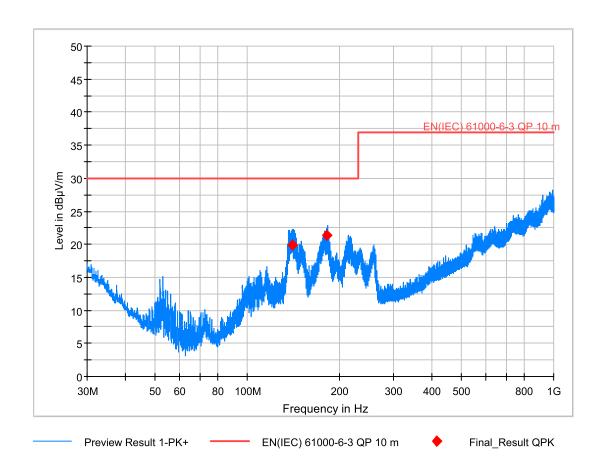
During the test the EUT case was not separately grounded.

Radiated emission. Complete measurement 30 - 1000 MHz

Test Description: Radiated emission. Complete measurement 30 - 1000 MHz

Date: 2021-05-28
EUT Name: M3 Display
Manufacturer: Eletta Flow AB

Serial Number: 000


Operating Conditions: Normal operation. 24 VDC supply. 22 I/m "flow"

Test Site: DELTA Development Technology AB

Operator Name: Lars J

Test Specification: EN/(IEC) 61000-6-3:2007+A1

Comment:

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
140.220000	19.94	30.00	10.06	1000.0	120.000	116.0	V	234.0	-7.1
182.340000	21.30	30.00	8.70	1000.0	120.000	292.0	Н	138.0	-9.5

Photo 4.6.1 Test setup regarding measurement of radio frequency electromagnetic field.

Photo 4.6.2 Test setup regarding measurement of radio frequency electromagnetic field. Front view.

Photo 4.6.3 Test setup regarding measurement of radio frequency electromagnetic field. Rear view.

5. National registrations and accreditations

5.1 SWEDAC Accreditation

Organization: Swedish Board for Accreditation and Conformity Assessment -

SWEDAC, see www.swedac.se and www.ilac.org

Registration Number: 1688

SWEDAC is part of ILAC (International Laboratory Accreditation Cooperation)

including its MRA (Mutual Recognition Arrangement).

5.2 FCC Registrations

Organization: Federal Communications Commission, USA

Designation number: SE0004

Company Number: 187770

Facilities: EMC chamber A 3 m and 10 m

5.3 ISED Registrations

Organization: Innovation, Science and Economic Development Canada

Designation number: SE0006

Company Number: 9347A

Facilities: EMC chamber A 3 m and 10 m

6. List of instruments

Setup	Setup VEC1									
Measurement of radio frequency electromagnetic field										
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty					
\boxtimes	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.15	5.0 dB					
\boxtimes	36020	Measuring receiver	Rohde & Schwarz	ESU26]					
\boxtimes	IE-B928	Antenna Bilog	Chase	CBL6111A]					
\boxtimes	36151	Preamplifier	FORCE	Preamp 0.5MHz-4GHz]					
\boxtimes	36166	Power supply	Mascot	6823 Mod.]					
	36130	CMAD Absorption clamp	DELTA	CMAD D25/16-1-4]					
\boxtimes	36071	Controller	Maturo	NCD						
\boxtimes	36072	Tilt antenna mast	Maturo	TAM 4.0-E						
\boxtimes		Turntable	Heinrich Deisel	DT 440						

Setup	Setup VIA3									
lmmun	Immunity to conducted radio frequency disturbances									
Used	ID no.	Description	Manufacturer	Type no.	Setup uncertainty					
\boxtimes	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.00	1.4 dB					
\boxtimes	E-H908	Signal generator	Marconi	2024						
\boxtimes	E-H909	Amplifier	Amplifier Research	75A250						
\boxtimes	36148	Average Power Sensor	Rohde & Schwarz	NRP18A						
\boxtimes	E-I026	-40 dBc Voltage Sampler	DELTA-Denmark							
\boxtimes	E-I022	RF attenuator 6 dB	Weinschel Corp	65-6-3						
 1	TE-A543	CDN, 0.15-230 MHz	Erika Fiedler	CDN M1						
 1	TE-A544	CDN, 0.15-230 MHz	Erika Fiedler	CDN M2						
Note 1:	see test shee	t for usage of CDN or EM-cla	amp	•	•					

Setup	Setup VIB1									
lmmun	Immunity to fast transients									
Used	ID no. Description Manufacturer Type no. Setup uncertainty									
	36035	Software	EM TEST	ISMIEC ver. 4.10	1.1 dB					
	E-L444	Burst/ Surge generator	EM TEST	UCS 500 M4						
	36026	Coupling network	EM TEST	CNI 503						
\boxtimes	E-L443	Coupling clamp	EM TEST	HFK						

Setup	Setup VIC2									
lmmun	ity to electro	static discharges								
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty					
	29838	ESD simulator	KeyTek	MiniZap MZ-15/EC	1.1 dB					

Setup	Setup VID1										
lmmun	Immunity to surge transients										
Used	Used ID no. Description Manufacturer Type no. Setup uncertainty										
\boxtimes	36035	Software	EM TEST	ISMIEC ver. 4.10	1.1 dB						
\boxtimes	E-L444	Burst/ Surge generator	EM TEST	UCS 500 M4							
\boxtimes	E-K534	Coupling module	EMC-Partner	CN-U							
\boxtimes	E-K536	Decoupling module LF	EMC-Partner	DN-LF1							
\boxtimes	E-K537	Decoupling module LF	EMC-Partner	DN-LF2							

Setup	Setup VIE3									
lmmun	Immunity to radio frequency electromagnetic fields									
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty					
\square	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.20	1.8 dB					
	36102	Signal Generator	Rohde & Schwarz	SMB100A]					
	304	Field Strength Meter	Amplifier Research	AR-FM 2000]					
	IE-B886	E-field Sensor	Amplifier Research	FP 2000]					
	36103	Average Power Sensor	Rohde & Schwarz	NRP-Z91						
\square	36104	Average Power Sensor	Rohde & Schwarz	NRP-Z91						
\square	36100	Broadband Amplifier	Rohde & Schwarz	BBA150-D200]					
\square	36101	Broadband Amplifier	Rohde & Schwarz	BBA150-E100	1					
\square	36105	Horn Antenna	Rohde & Schwarz	HF907]					

Setup	Setup VIE4									
lmmun	Immunity to radio frequency electromagnetic fields									
Used	ID no.	Description	Manufacturer	Type no.	Setup uncertainty					
\square	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.20	1.8 dB					
	36185	Signal Generator	Rohde & Schwarz	SMB100B						
	304	Field Strength Meter	Amplifier Research	FM 2000						
	IE-B886	E-field Sensor	Amplifier Research	FP 2000						
	36186	Average Power Sensor	Rohde & Schwarz	NRP6AN						
	36187	Average Power Sensor	Rohde & Schwarz	NRP6AN						
	36184	Broadband Amplifier	Rohde & Schwarz	BBA150-BC1250						
	35105	Antenna Log Periodic	Rohde & Schwarz	HL 023 A1						
	29451	Antenna Tower	EMCO	1050						
	29452	Tower Controller	EMCO	1050						

Other i	Other instruments used										
Used	Used ID no. Description Manufacturer Type no. S										
	35149	Temperature- and hygrometer	Ecolog	TH 1							
	IM-A308	Temperature- and hygrometer	Vaisala	HMI31							

DELTA Test ReportTEST REPORT issued by an Accredited Testing Laboratory

EMC test of D-series upgrade

Performed for Eletta Flow AB

622-20134-10-R0 Page 1 of 37

08 August 2022

DELTA Development Technology AB

Finnslätten Elektronikgatan 47 721 36 Västerås Sweden

Tel. 021-31 44 80 infose@delta.dk www: se.madebydelta.com

Bankgiro 5534-7728 VAT SE 556556207001

DELTA Development
Technology AB
is a subsidiary company of
FORCE Technology

Title

EMC test of D-series upgrade

Test object

D-series

Report no.

622-20134-10-R0

Test period

03 May 2022 to 06 June 2022

Client

Eletta Flow AB Mälarvägen 3 141 71 Segeltorp

Sweden

Contact person

Ahmad Jasim

E-mail: ahmad.jasim@eletta.com

Manufacturer

Eletta Flow AB

Specifications

EN IEC 61000-6-2:2019, EN IEC 61000-6-3:2021

Results

The test object was found to be in compliance with the

specifications, as listed in Section 1

Test personnel

Jan Högkvist

Date

08 August 2022

Project Manager

Jan Högkvist Specialist

DELTA

Responsible

Lars Johnsson. Head of quality

DELTA

	Table of contents	Page
1.	Summary of tests	4
2.	Test object and auxiliary equipment	5
2.1	Test object	5
2.2	Auxiliary equipment	6
3.	Geeral test conditions	8
3.1	Test setup during test	8
3.1.1	Cables	8
3.1.2	Description and intended use of test object	8
3.1.3	Test modes and supervision during immunity and emission tests	8
3.1.4	Nominal power consumption	8
3.2	Criteria for compliance during immunity test	9
3.3	Modifications of the test object	10
3.4	Test sequence	10
4.	Test results	11
4.1	Immunity to electrostatic discharges	11
4.2	Immunity to radio frequency electromagnetic field	16
4.3	Immunity to fast transients	20
4.4	Immunity to surge transients	23
4.5	Immunity to conducted radio frequency disturbances	26
4.6	Measurement of radio frequency electromagnetic field	29
5.	National registrations and accreditations	35
5.1	SWEDAC Accreditation	35
5.2	FCC Registrations	35
5.3	ISED Registrations	35
6.	List of instruments	36

1. Summary of tests

Tests	Test methods	Results
Immunity to electrostatic discharges	EN/(IEC) 61000-4-2:2009	Passed
Immunity to radio frequency electromagnetic fields	EN/(IEC) 61000-4-3:2020	Passed
Immunity to fast transients	EN/(IEC) 61000-4-4:2012	Passed
Immunity to surge transients	EN/(IEC) 61000-4-5:2014+A1	Passed
Immunity to conducted radio frequency disturbances	EN/(IEC) 61000-4-6:2014	Passed
Immunity to power frequency magnetic field	EN/(IEC) 61000-4-8:2010	Not performed Note 1
Measurement of radio frequency electromagnetic field	CISPR 16-2-3:2016	Passed

Note 1: The test object contains no magnetically sensitive devices.

The given result is based on a shared risk principle with respect to the measurement uncertainty.

The edition of the basic standards above is equal or newer than those referenced in the standard below.

Conclusion

The test object mentioned in this report meets the requirements of the standards stated below, with respect to the test listed above.

- EN IEC 61000-6-2:2019 "Electromagnetic compatibility (EMC) Part 6-2: Generic standards Immunity for industrial environments"
- EN IEC 61000-6-3:2021 "Electromagnetic compatibility (EMC) Part 6-3: Generic standards Emission standard for residential, commercial and light-industrial environments"

The test results relate only to the object tested.

2. Test object and auxiliary equipment

2.1 **Test object**

Photo 2.1.1 D-series upgrade

Test object 2.1.1

D-series upgrade Name of test object

D-series Model / type

Part no.

Serial no. 00000

FCC ID

Manufacturer Eletta Flow AB

19 - 28 Vdc (24Vdc nominal) Supply voltage

Software version V3.0 Hardware version V1.1 Cycle time

Highest frequency generated or

used

32 MHz

Comment

Received Date: 03 May. 2022 Status: Prototype

2.2 Auxiliary equipment

Photo 2.2.1 Auxiliary equipment.

Auxiliary equipment 2.2.1

Name of auxiliary equipment Digital multimeter

Model / type MetraHit 18S

DELTA ident no. IE-C966

Manufacturer Metrawatt

Comment Auxiliary equipment supplied by DELTA, who also has

the responsibility for its correct function and set up.

Used to measure the output current from the test object

Auxiliary equipment 2.2.2

Name of auxiliary equipment Digital multimeter

Model / type 34401A
DELTA ident no. 36061
Manufacturer Agilent

Comment Auxiliary equipment supplied by DELTA, who also has

the responsibility for its correct function and set up.

Used to measure the output current from the test object

Auxiliary equipment 2.2.3

Name of auxiliary equipment Power supply

Model / type B60-10R

DELTA ident no. IE-C183

Manufacturer Oltronix

Supply voltage Output set to 24 VDC

Comment Auxiliary equipment supplied by DELTA, who also has

the responsibility for its correct function and set up.

Used for power to the test object

3. Geeral test conditions

3.1 Test setup during test

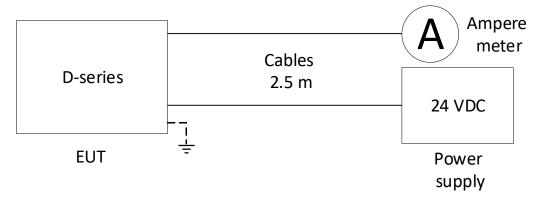


Figure 3.1.1 Block diagram of test object with cables and auxiliary equipment.

3.1.1 **Cables**

The following cables were used during test.

Port name	Port type	Shielded/ unshielded	Length during test [m]	Maximum length [m]	Remarks
DC power	DC power	Unshielded	0.3 - 2.5	> 30	
Analog output	signal	Unshielded	0.3 - 2.5	> 30	

3.1.2 Description and intended use of test object

The object is used for measuring the flow of liquid and gas and utilizes differential pressure to calculate the flow of the medium.

3.1.3 Test modes and supervision during immunity and emission tests

The potentiometer that measuring mechanical movement is fixed.

The flow monitored on a display. The flow can be monitored by measuring the loop current between the object and the power supply.

The test was monitored by measuring the output current and visually observing the display.

3.1.4 Nominal power consumption

Nominal 24 VDC. 2.4 W.

3.2 Criteria for compliance during immunity test

Performance criteria according to corresponding standard were applied during immunity tests as follows:

General

The test object shall not become dangerous or unsafe as a result of the application of the tests.

Performance criterion A

The test object shall continue to operate as intended during the test.

Influence on the analog mA output signal shall be < +/-2% FS.

Influence on the display indicator shall be < +/-2% FS.

No error or warning signals are allowed.

The test object is not allowed to change operating mode.

Performance criterion B

The test object shall continue to operate as intended after the test.

No change of operating state or stored data are allowed.

Performance criterion C

The test object is allowed to have temporary degradation or loss of function or performance which requires operator intervention or systems reset.

3.3 Modifications of the test object

The following modification was implemented to the test object.

In order to improve the result of Surge transient immunity test and Conducted RF immunity test the following modification was implemented:
 The following components were misplaced and removed:

Component	Description
R4	B72500E0250K060
D3	CDSF4148
C8	22nF

3.4 Test sequence

The tests described in this test report were performed in the following sequence:

- 1. Measurement of radio frequency electromagnetic field
- 2. Immunity to radio frequency electromagnetic fields
- 3. Immunity to fast transients
- 4. Immunity to surge transients. Failed.
- 5. Immunity to conducted radio frequency disturbances
- 6. Immunity to electrostatic discharges
- 7. Modification 1 implemented. See section 3.3 for details.
- 8. Immunity to surge transients. Retest. Passed.
- 9. Immunity to conducted radio frequency disturbances. Retest.

4. Test results

4.1 Immunity to electrostatic discharges

Test object	D-series upgrade	Project no.	622-20134
Туре	D-series	Date	10 May 2022
Serial no.	00000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	В

Test method Characteristics	,	EN/(IEC) 61000-4-2:2009 Discharge network: 150 pF, 330 Ω						24 °C 35% RH
Test equipm.	EMC T	EMC Transient lab Västerås Setup VIC2					ty	1.1 dB
Surface under test		Test standard's name of surface	Coupling of discharges	No of disch. each combin.	Amplitude [kV]	Passed Remark		emarks
Enclosure Indirect discharge		Enclosure	HCP contact	10	+/- 4	Yes	See Photo 4.1.2 and 4.1.3	
Enclosure Indirect discharge		Enclosure	VCP contact	10	+/- 4	Yes	Yes See Photo 4 and 4.1.5	
Metallic case and screws		Metallic	Direct contact	10	+/- 4	Yes	Yes See Photo 4 4.1.7 and 4	
Plastic display		Insulated	Direct air	10	+/- 2, 4 and 8	Yes	See Photo 4.1	

Criteria for compliance See Section 3.2

Test result The discharges caused no malfunctions

Compliant Yes. Criterion A fulfilled.

Comments The EUT was tested with the case both grounded and not

Photo 4.1.1 Test setup regarding immunity to electrostatic discharges.



Photo 4.1.2 Test setup regarding immunity to electrostatic discharges. Discharges via HCP indirect coupling.



Photo 4.1.3 Test setup regarding immunity to electrostatic discharges.

Discharges via HCP indirect coupling.

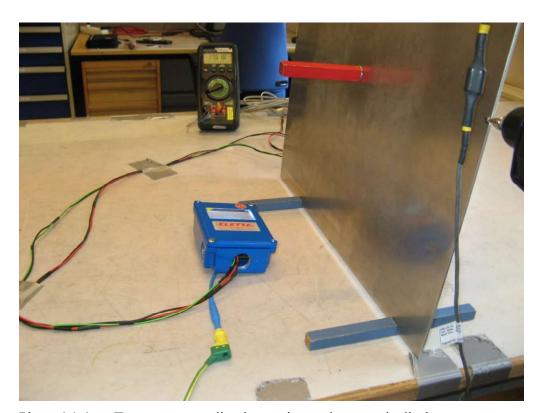


Photo 4.1.4 Test setup regarding immunity to electrostatic discharges. Discharges via VCP indirect coupling.

Photo 4.1.5 Test setup regarding immunity to electrostatic discharges.

Discharges via VCP indirect coupling.

Photo 4.1.6 Test setup regarding immunity to direct contact electrostatic discharges.

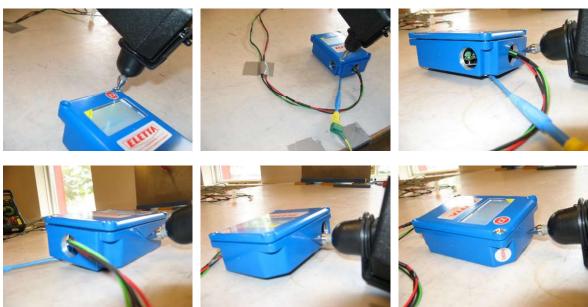


Photo 4.1.7 Test setup regarding immunity to electrostatic discharges.

Test points for direct contact discharges.

Photo 4.1.8 Test setup regarding immunity to electrostatic discharges.

Test points for direct contact discharges.

Photo 4.1.9 Test setup regarding immunity to direct air electrostatic discharges.

4.2 Immunity to radio frequency electromagnetic field

Test object	D-series upgrade	Project no.	622-20134
Туре	D-series	Date	05 May 2022
Serial no.	00000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	А

Test method Characteristics	١ ١	EN/(IEC) 61000-4-3:2020 16 point pre-Calibration				24 °C 26% RH
Test equipm.	l	l GHz: EMC Hall B Väs Hz: EMC Hall B Väster	Uncertainty	1.8 dB		
Frequency r	ange	Modulation	Field direction	Amplitude [V/m]	Passed	Remarks
		Front	side exposed to the f	ield		
80-1000 M	Hz	80 % AM 1 kHz	Horizontal	10	Yes	Note 1
80-1000 M	Hz	80 % AM 1 kHz	Vertical	10	Yes	Note 1
1.4-6 GH	z	80 % AM 1 kHz	Horizontal	3 Yes		
1.4-6 GH	Z	80 % AM 1 kHz	Vertical	3	Yes	
		Bottom side (w	rith cable inlet) expose	ed to the field		
80-1000 M	Hz	80 % AM 1 kHz	Horizontal	10	Yes	Note 1
80-1000 M	1000 MHz 80 % AM 1 kHz		Vertical	10	Yes	Note 1
1.4-6 GH	z	80 % AM 1 kHz	Horizontal	3	Yes	
1.4-6 GH	Z	80 % AM 1 kHz	Vertical	3	Yes	
		Left	side exposed to the fi	eld		
80-1000 M	Hz	80 % AM 1 kHz	Horizontal	10	Yes	Note 1
80-1000 M	Hz	80 % AM 1 kHz	Vertical	10	Yes	Note 1
1.4-6 GH	z	80 % AM 1 kHz	Horizontal	3	Yes	
1.4-6 GH	z	80 % AM 1 kHz	Vertical	3	Yes	

Note 1: The display reading had a small deviation below 100 MHz. The deviation of the reading was less than 2 % but the measured current was not affected. Criteria A was fulfilled.

Criteria for compliance See Section 3.2

Test result The radio frequency electromagnetic field caused no

malfunctions

Compliant Yes

Setup comments Frequency step: 1 %, dwell time: 1 second

Comments The test shall normally be performed with the field

generating antenna facing each side of the test object. When technically justified the test object can be tested by

exposing fewer faces to the generating antenna.

In agreement with the client, the sides assumed to be most

susceptive were tested here.

During the test the EUT case was grounded.

Photo 4.2.1 Test setup regarding immunity to radio frequency electromagnetic field for test between 80-1000 MHz.

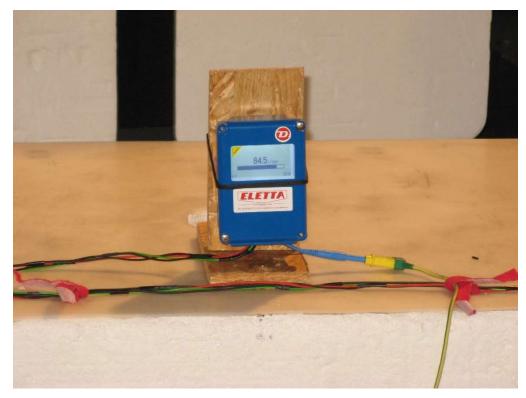


Photo 4.2.2 Test setup regarding immunity to radio frequency electromagnetic field. Front side exposed to the field.

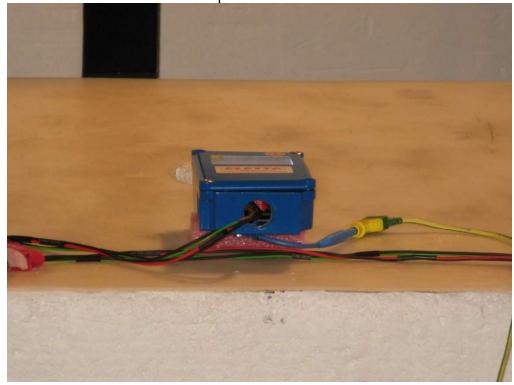


Photo 4.2.3 Test setup regarding immunity to radio frequency electromagnetic field. Bottom side (with cable inlet) exposed to the field.

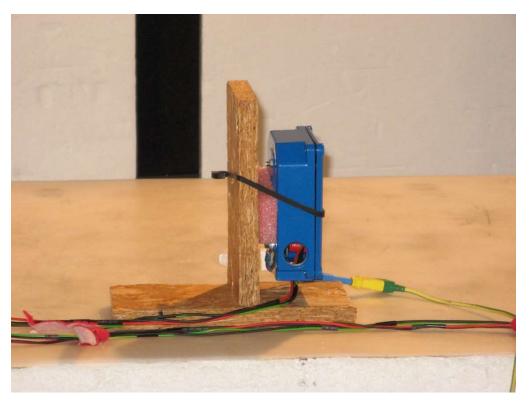


Photo 4.2.4 Test setup regarding immunity to radio frequency electromagnetic field. Left side exposed to the field.

Photo 4.2.5 Test setup regarding immunity to radio frequency electromagnetic field for test above 1 GHz.

4.3 Immunity to fast transients

Test object	D-series upgrade	Project no.	622-20134
Туре	D-series	Date	09 May 2022
Serial no.	00000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	В

Test method Characteristics	l ' '	EN/(IEC) 61000-4-4:2012 5 kHz bursts of 15/300 ms and 100 kHz bursts of 0.75/300 ms						24 °C 22% RH
Test equipm.	EMC Tra	ansient lab Väste	erås Setup VIB1			Uncertainty	,	1.1 dB
Manufacturer's name of port		Test standard's name of port	Coupling	Burst frequency [kHz]	Amplitude [kV]	Passed	F	Remarks
DC pow	er er	DC power	All leads-GP	5	+/- 1	Yes Note		Note 1
DC pow	er er	DC power	All leads-GP	100	+/- 1	Yes Note		Note 1
DC pow	er	DC power	All leads-GP	5	+/- 1	Yes		Note 2
DC pow	ver .	DC power	All leads-GP	100	+/- 1	Yes		Note 2
Analog ou	ıtput	Cable	Cap.clamp-GP	5	+/- 1	Yes		Note 1
Analog output		Cable	Cap.clamp-GP	100	+/- 1	Yes		Note 1
Analog output		Cable	Cap.clamp-GP	5	+/- 1	Yes		Note 2
Analog ou	ıtput	Cable	Cap.clamp-GP	100	+/- 1	Yes		Note 2

GP= Ground reference Plane
Note 1: Test object grounded.
Note 2: Test object not grounded.

Criteria for compliance See Section 3.2

Test result The fast transients caused no malfunctions

Compliant Yes

Test time 1 min/polarity

Comments The EUT was tested with the case both grounded and not

Photo 4.3.1 Test setup regarding immunity to fast transients.



Photo 4.3.2 Test setup regarding immunity to fast transients on DC power port. Test object case not grounded.

Photo 4.3.3 Test setup regarding immunity to fast transients on analog output port. Test object case grounded.

4.4 Immunity to surge transients

Test object	D-series upgrade	Project no.	622-20134
Туре	D-series	Date	09 May, 09 June 2022
Serial no.	00000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	В

Test method Characteristics	EN/(IEC) 61000-4-5:2014+A1 Temperature Open circuit volt.: 1.2/50 μs. Short circuit curr.: 8/20 μs							24 °C 41% RH
Test equipm.	EM	C Transient lab Väs	terås Setup VID5			Uncert	ainty	1.1 dB
Manufacturer's name of port		Test standard's name of port	Coupling and generator impedance	No of surges each combin.	[kV]		Passed	Remarks
DC power		DC power	+VDC - PE 42 Ω, 0.5 μF	5	+/- 0.5, 1		Yes	Note 1
DC power		DC power	0 V - PE 42 Ω, 0.5 μF	5	+/- 0.5, 1		Yes	Note 1
DC power		DC power	+VDC - 0 V 42 Ω, 0.5 μF	5	+/- 0.5		Yes	Note 1
DC power		DC power	+VDC - PE 42 Ω, 0.5 μF	5	+/- 0.5, 1		Yes	Note 2
DC power		DC power	0 V - PE 42 Ω, 0.5 μF	5	+/- 0.5, 1		Yes	Note 2
DC power		DC power	+VDC - 0 V 42 Ω, 0.5 μF	5	+/- 0.5		Yes	Note 2
Analog outp	ut	Unshielded lines	+VDC - PE 42 Ω, 0.5 μF	5	+/- 0.5, 1		Yes	Note 1
Analog outp	ut	Unshielded lines	0 V - PE 42 Ω, 0.5 μF	5	+/- (0.5, 1	Yes	Note 1
Analog outp	ut	Unshielded lines	+VDC - PE 42 Ω, 0.5 μF	5	+/- (0.5, 1	Yes	Note 2
Analog outp	ut	Unshielded lines	0 V - PE 42 Ω, 0.5 μF	5	+/- (0.5, 1	Yes	Note 2
Note 4. Test shirest agreemented								

Note 1: Test object grounded.

Note 2: Test object not grounded.

Time between tests 10 s

Criteria for compliance See section 3.2

Test result The disturbances caused no malfunctions with

modification 1 implemented

Compliant Yes

Comments The EUT was tested with the case both grounded and not

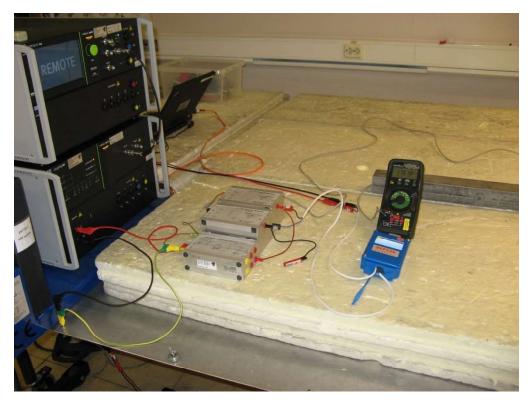


Photo 4.4.1 Test setup regarding immunity to surge transients.

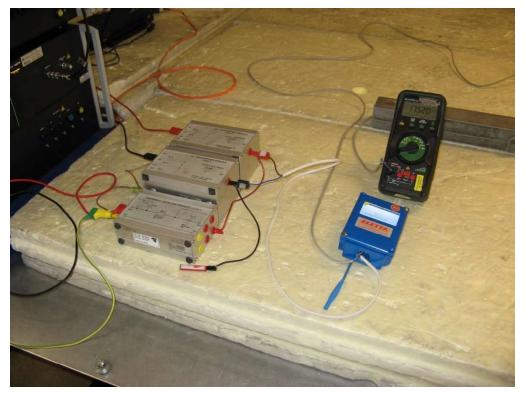


Photo 4.4.2 Test setup regarding immunity to surge transients on DC power port. Test object case not grounded.

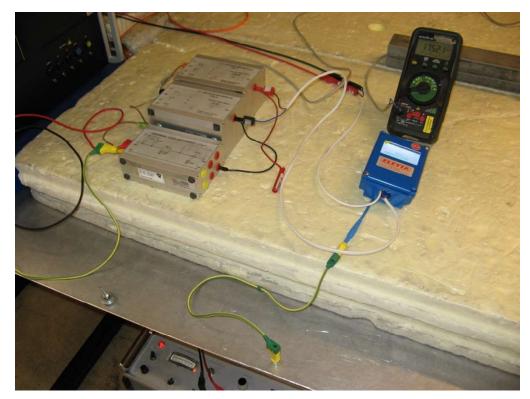


Photo 4.4.3 Test setup regarding immunity to surge transients on analog output port. Test object case grounded.

4.5 Immunity to conducted radio frequency disturbances

Test object	D-series upgrade	Project no.	622-20134
Туре	D-series	Date	09 May, 09 June 2022
Serial no.	00000	Initials	JANH
Specification	EN IEC 61000-6-2:2019	Required Perf. criter.	А

Test method Characteristics	١ ١	C) 61000-4-6:2014 ncy range: 0.15-80 N	M 1 kHz	Temperature Humidity	24 °C 41% RH	
Test equipm.	EMC Tr	ansient lab Västerå	s Setup VIA3		Uncertainty	1.4 dB
	Manufacturer's Test standard's Coupling Amplitude name of port Network [V]				Passed	Remarks
DC power	er	DC power	CDN M2, TE-A544	10	Yes	Note 1
DC power	er	DC power	CDN M2, TE-A544	10	Yes	Note 2
Analog output Unshielded cable CDN AF2_1, IE-D010 10		10	Yes	Note 1		
Analog ou	tput	Unshielded cable	CDN AF2_1, IE-D010	10	Yes	Note 2

Note 1: Test object grounded.

Note 2: Test object not grounded.

Criteria for compliance See Section 3.2

Test result The disturbances caused no malfunctions with

modification 1 implemented

Compliant Yes

Setup comments Frequency step: 1 %, dwell time: 1 second

Comments The EUT was tested with the case both grounded and not

Photo 4.5.1 Test setup regarding immunity to conducted radio frequency disturbances.

Photo 4.5.2 Test setup regarding immunity to conducted radio frequency disturbances on DC power port. Test object case grounded.

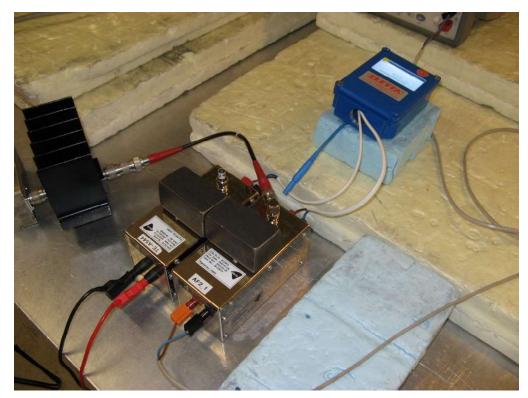


Photo 4.5.3 Test setup regarding immunity to conducted radio frequency disturbances on analog output port. Test object case not grounded.

4.6 Measurement of radio frequency electromagnetic field

Test object	D-series upgrade	Project no.	622-20134
Туре	D-series D-series	Date	03 May 2022
Serial no.	00000	Initials	JANH
Specification	EN IEC) 61000-6-3:2021	Frequency	30-1000 MHz

Test method Characteristics	CISPR 16-2-3:2016 Complete search, antenna distance 10 m	Temperature Humidity	21 °C 38% RH
Detector	Peak and quasi peak	Bandwidth	120 kHz
Test equipm.	EMC Hall A Västerås Setup VEC1	Uncertainty	5.0 dB

Test result The measured field strengths were below the limit

Compliant Yes

Comments 16 scans measurement were carried out with the EUT case

grounded and not grounded.

The highest measured radiated emission was observed

with the case not grounded.

See the 3 graphs in the figures below. Scans with the case not grounded, grounded and complete measurement.

The complete measurement was performed on the EUT

with the case not grounded.

Final maximal measurements by variation of turntable azimuth, antenna height, and antenna polarisation.

CMAD absorption clamps were used on power supply

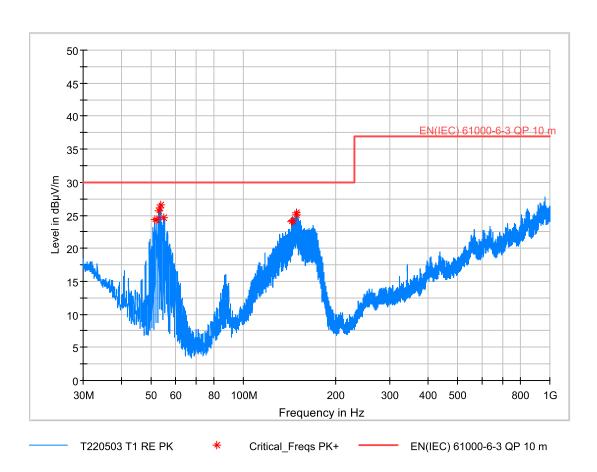
cable and analog output cable.

Radiated emission. 16 scans measurement 30 - 1000 MHz

Test Description: Radiated emission. 16 scans measurement 30 - 1000 MHz

Date: 2022-05-03
EUT Name: D-series upgrade
Manufacturer: Eletta Flow AB

Serial Number: 00000


Operating Conditions: Supply voltage 24 VDC

Test Site: DELTA Development Technology AB

Operator Name: Jan Högkvist

Test Specification: EN IEC 61000-6-3:2021

Comment: Not grounded

Critical Fregs

•		,45						
	Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
	51.570000	24.31	30.00	5.69	100.0	V	90.0	-11.1
	52.290000	24.34	30.00	5.66	100.0	V	90.0	-11.4
	52.830000	25.68	30.00	4.32	100.0	V	90.0	-11.6
	53.550000	26.12	30.00	3.88	100.0	V	90.0	-11.8
	53.700000	26.54	30.00	3.46	100.0	V	90.0	-11.9
	54.960000	24.70	30.00	5.30	100.0	V	90.0	-12.2
	144.000000	24.10	30.00	5.90	100.0	V	0.0	-7.4
	144.870000	24.25	30.00	5.75	100.0	٧	0.0	-7.4
	148.440000	25.02	30.00	4.98	100.0	٧	0.0	-7.5
	149.040000	25.31	30.00	4.69	100.0	٧	0.0	-7.5

Radiated emission. 16 scans measurement 30 - 1000 MHz

Test Description: Radiated emission. 16 scans measurement 30 - 1000 MHz

Date: 2022-05-03
EUT Name: D-series upgrade
Manufacturer: Eletta Flow AB

Serial Number: 00000

Operating Conditions: Supply voltage 24 VDC

Test Site: DELTA Development Technology AB

Operator Name: Jan Högkvist

Test Specification: EN IEC 61000-6-3:2021

Comment: Grounded

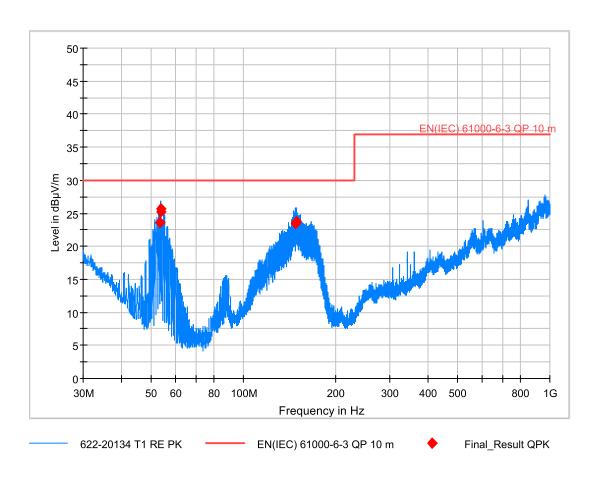
Critical Freqs

<u> </u>	, 43						
Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
35.070000	23.28	30.00	6.72	100.0	٧	270.0	-3.1
35.700000	23.87	30.00	6.13	100.0	٧	270.0	-3.4
37.110000	23.95	30.00	6.05	100.0	٧	270.0	-4.1
140.400000	23.95	30.00	6.05	100.0	٧	0.0	-7.2
145.440000	23.86	30.00	6.14	100.0	٧	0.0	-7.4
153.330000	24.97	30.00	5.03	100.0	٧	180.0	-7.7
169.830000	25.02	30.00	4.98	100.0	٧	0.0	-8.7
173.340000	25.21	30.00	4.79	100.0	٧	0.0	-8.9
174.060000	23.95	30.00	6.05	100.0	٧	0.0	-9.0
174.810000	23.83	30.00	6.17	100.0	٧	0.0	-9.0
	Frequency (MHz) 35.070000 35.700000 37.110000 140.400000 145.440000 153.330000 169.830000 173.340000	Frequency (MHz) (dBμV/m) 35.070000 23.28 35.700000 23.87 37.110000 23.95 140.400000 23.95 145.440000 23.86 153.330000 24.97 169.830000 25.02 173.340000 23.95	Frequency (MHz) MaxPeak (dBμV/m) Limit (dBμV/m) 35.070000 23.28 30.00 35.700000 23.87 30.00 37.110000 23.95 30.00 140.400000 23.95 30.00 145.440000 23.86 30.00 153.330000 24.97 30.00 169.830000 25.02 30.00 173.340000 25.21 30.00 174.060000 23.95 30.00	Frequency (MHz) MaxPeak (dBμV/m) Limit (dBμV/m) Margin (dB) 35.070000 23.28 30.00 6.72 35.700000 23.87 30.00 6.13 37.110000 23.95 30.00 6.05 140.400000 23.95 30.00 6.05 145.440000 23.86 30.00 6.14 153.330000 24.97 30.00 5.03 169.830000 25.02 30.00 4.98 173.340000 25.21 30.00 4.79 174.060000 23.95 30.00 6.05	Frequency (MHz) MaxPeak (dBμV/m) Limit (dBμV/m) Margin (dB) Height (cm) 35.070000 23.28 30.00 6.72 100.0 35.700000 23.87 30.00 6.13 100.0 37.110000 23.95 30.00 6.05 100.0 140.400000 23.95 30.00 6.05 100.0 145.440000 23.86 30.00 6.14 100.0 153.330000 24.97 30.00 5.03 100.0 169.830000 25.02 30.00 4.98 100.0 173.340000 25.21 30.00 4.79 100.0 174.060000 23.95 30.00 6.05 100.0	Frequency (MHz) MaxPeak (dBμV/m) Limit (dBμV/m) Margin (dB) Height (cm) Pol (cm) 35.070000 23.28 30.00 6.72 100.0 V 35.700000 23.87 30.00 6.13 100.0 V 37.110000 23.95 30.00 6.05 100.0 V 140.400000 23.95 30.00 6.05 100.0 V 145.440000 23.86 30.00 6.14 100.0 V 153.330000 24.97 30.00 5.03 100.0 V 169.830000 25.02 30.00 4.98 100.0 V 173.340000 25.21 30.00 6.05 100.0 V 174.060000 23.95 30.00 6.05 100.0 V	Frequency (MHz) MaxPeak (dBμV/m) Limit (dBμV/m) Margin (dB) Height (cm) Pol (deg) 35.070000 23.28 30.00 6.72 100.0 V 270.0 35.700000 23.87 30.00 6.13 100.0 V 270.0 37.110000 23.95 30.00 6.05 100.0 V 270.0 140.400000 23.95 30.00 6.05 100.0 V 0.0 145.440000 23.86 30.00 6.14 100.0 V 0.0 153.330000 24.97 30.00 5.03 100.0 V 180.0 169.830000 25.02 30.00 4.98 100.0 V 0.0 173.340000 25.21 30.00 6.05 100.0 V 0.0 174.060000 23.95 30.00 6.05 100.0 V 0.0

Radiated emission. Complete measurement 30 - 1000 MHz

Test Description: Radiated emission. Complete measurement 30 - 1000 MHz

Date: 2022-05-03
EUT Name: D-series upgrade
Manufacturer: Eletta Flow AB


Serial Number: 00000

Operating Conditions: Supply voltage 24 VDC

Test Site: DELTA Development Technology AB

Operator Name: Jan Högkvist

Test Specification: EN IEC 61000-6-3:2021
Comment: Test object not grounded

Final Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
53.490000	23.63	30.00	6.37	1000.0	120.000	150.0	V	135.0	-11.8
53.700000	25.67	30.00	4.33	1000.0	120.000	103.0	V	114.0	-11.9
53.730000	25.22	30.00	4.78	1000.0	120.000	103.0	V	126.0	-11.9
147.570000	23.41	30.00	6.59	1000.0	120.000	126.0	V	334.0	-7.4
148.980000	23.76	30.00	6.24	1000.0	120.000	106.0	V	322.0	-7.5

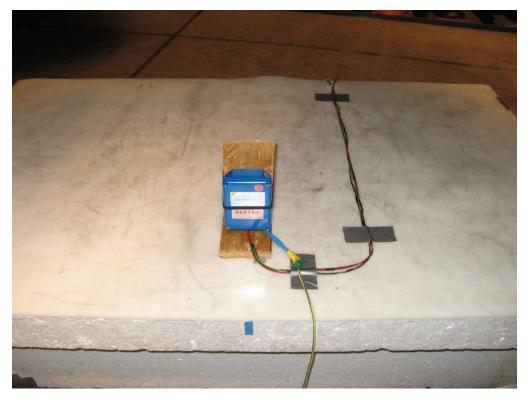


Photo 4.6.1 Test setup regarding measurement of radio frequency electromagnetic field. Test object case grounded.

Photo 4.6.2 Test setup regarding measurement of radio frequency electromagnetic field. Front view. Test object case not grounded.

Photo 4.6.3 Test setup regarding measurement of radio frequency electromagnetic field. Rear view.

5. National registrations and accreditations

5.1 SWEDAC Accreditation

Organization: Swedish Board for Accreditation and Conformity Assessment -

SWEDAC, see www.swedac.se and www.ilac.org

Registration Number: 1688

SWEDAC is part of ILAC (International Laboratory Accreditation Cooperation)

including its MRA (Mutual Recognition Arrangement).

5.2 FCC Registrations

Organization: Federal Communications Commission, USA

Designation number: SE0004

Company Number: 187770

Facilities: EMC chamber A 3 m and 10 m

5.3 ISED Registrations

Organization: Innovation, Science and Economic Development Canada

Designation number: SE0006

Company Number: 9347A

Facilities: EMC chamber A 3 m and 10 m

6. List of instruments

Setup	VEC1								
Measu	Measurement of radio frequency electromagnetic field								
Used	ID no.	Description	Manufacturer	Type no.	Setup uncertainty				
\boxtimes	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.15	5.0 dB				
\boxtimes	36205	Measuring receiver	Rohde & Schwarz	ESW44]				
\boxtimes	IE-B928	Antenna Bilog	Chase	CBL6111A]				
\boxtimes	36151	Preamplifier	FORCE	Preamp 0.5MHz-4GHz]				
\boxtimes	36166	Power supply	Mascot	6823 Mod.					
	36129	CMAD Absorption clamp	DELTA	CMAD D25/16-1-4					
	36130	CMAD Absorption clamp	DELTA	CMAD D25/16-1-4					
\boxtimes	36071	Controller	Maturo	NCD					
\boxtimes	36072	Tilt antenna mast	Maturo	TAM 4.0-E					
\boxtimes		Turntable	Heinrich Deisel	DT 440					

Setup	VIA3						
Immunity to conducted radio frequency disturbances							
Used	ID no.	Description	Manufacturer	Type no.	Setup uncertainty		
\boxtimes	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.00	1.4 dB		
\boxtimes	E-H908	Signal generator	Marconi	2024	1		
\boxtimes	E-H909	Amplifier	Amplifier Research	75A250]		
\boxtimes	36148	Average Power Sensor	Rohde & Schwarz	NRP18A	1		
\boxtimes	E-I026	-40 dBc Voltage Sampler	DELTA-Denmark]		
\boxtimes	E-I022	RF attenuator 6 dB	Weinschel Corp	65-6-3	1		
 □1	IE-D010	CDN, 0.15-80 MHz	Erika Fiedler	CDN AF2_1	1		
 □1	TE-A543	CDN, 0.15-230 MHz	Erika Fiedler	CDN M1]		
 □1	TE-A544	CDN, 0.15-230 MHz	Erika Fiedler	CDN M2			
Note 1:	see test shee	et for usage of CDN or EM-cla	amp	•	•		

Setup	Setup VIB1									
lmmun	ity to fast tr	ransients								
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty					
\boxtimes	36035	Software	EM TEST	ISMIEC ver. 4.10	1.1 dB					
\boxtimes	E-L444	Burst/ Surge generator	EM TEST	UCS 500 M4						
\boxtimes	36026	Coupling network	EM TEST	CNI 503						
\boxtimes	E-L443	Coupling clamp	EM TEST	HFK						

Setup	Setup VIC2								
lmmun	ity to electros	static discharges							
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty				
	29838	ESD simulator	KeyTek	MiniZap MZ-15/EC	1.1 dB				

Setup	Setup VID5								
Immun	Immunity to surge transients								
Used	ID no.	Description	Manufacturer	Type no.	Setup uncertainty				
\square	36165	Software	EM TEST	iec.control ver. 9.2.2	1.1 dB				
	36158	Transient generator	EM TEST	Compact NX5 bspt-1- 300-16					
	36159	Coupling-decoupling netwok	EM TEST	coupling NX5-R bs-3- 480-32					
	E-K534	Coupling module	EMC-Partner	CN-U					
	E-K536	Decoupling module LF	EMC-Partner	DN-LF1					
\square	E-K537	Decoupling module LF	EMC-Partner	DN-LF2					

Setup	Setup VIE3								
lmmun	Immunity to radio frequency electromagnetic fields								
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty				
\boxtimes	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.20	1.8 dB				
\boxtimes	36102	Signal Generator	Rohde & Schwarz	SMB100A					
\boxtimes	304	Field Strength Meter	Amplifier Research	AR-FM 2000					
\boxtimes	IE-B885	E-field Sensor	Amplifier Research	FP 2000					
\boxtimes	36103	Average Power Sensor	Rohde & Schwarz	NRP-Z91					
\boxtimes	36104	Average Power Sensor	Rohde & Schwarz	NRP-Z91]				
\boxtimes	36100	Broadband Amplifier	Rohde & Schwarz	BBA150-D200]				
\boxtimes	36101	Broadband Amplifier	Rohde & Schwarz	BBA150-E100					
\boxtimes	36105	Horn Antenna	Rohde & Schwarz	HF907]				

Setup VIE4									
Immunity to radio frequency electromagnetic fields									
Used	ID no.	Description	Manufacturer	Туре по.	Setup uncertainty				
\boxtimes	36070	Software	Rohde & Schwarz	EMC32 ver. 10.60.20	1.8 dB				
\boxtimes	36185	Signal Generator	Rohde & Schwarz	SMB100B					
\boxtimes	304	Field Strength Meter	Amplifier Research	FM 2000					
\boxtimes	IE-B885	E-field Sensor	Amplifier Research	FP 2000					
\boxtimes	36186	Average Power Sensor	Rohde & Schwarz	NRP6AN					
\boxtimes	36187	Average Power Sensor	Rohde & Schwarz	NRP6AN	1				
\boxtimes	36184	Broadband Amplifier	Rohde & Schwarz	BBA150-BC1250	1				
\boxtimes	36192	Antenna Log Periodic.	Schwarzbeck	STLP 9128 E	7				
\boxtimes		Antenna Tower	EMCO	1050	7				
\boxtimes		Tower Controller	Heinrich Deisel	HD 100	7				

Other instruments used							
Used	ID no.	Description	Manufacturer	Type no.	Setup uncertainty		
	35149	Temperature- and hygrometer	Ecolog	TH 1			
	IM-A308	Temperature- and hygrometer	Vaisala	HMI31			

